Northerner
Admin (Retired)
- Relationship to Diabetes
- Type 1
A new Johns Hopkins study of mice with the rodent equivalent of metabolic syndrome has added to evidence that the intestinal microbiome -- a "garden" of bacterial, viral and fungal genes -- plays a substantial role in the development of obesity and insulin resistance in mammals, including humans.
A report of the findings, published Jan. 24 in Mucosal Immunology, highlights the potential to prevent obesity and diabetes by manipulating levels and ratios of gut bacteria, and/or modifying the chemical and biological pathways for metabolism-activating genes.
"This study adds to our understanding of how bacteria may cause obesity, and we found particular types of bacteria in mice that were strongly linked to metabolic syndrome," says David Hackam, M.D., Ph.D., surgeon-in-chief and co-director of Johns Hopkins Children's Center and the study's senior author. "With this new knowledge we can look for ways to control the responsible bacteria or related genes and hopefully prevent obesity in children and adults."
https://www.sciencedaily.com/releases/2018/02/180212100618.htm
Read 'Gut' by Giulia Enders! 🙂
A report of the findings, published Jan. 24 in Mucosal Immunology, highlights the potential to prevent obesity and diabetes by manipulating levels and ratios of gut bacteria, and/or modifying the chemical and biological pathways for metabolism-activating genes.
"This study adds to our understanding of how bacteria may cause obesity, and we found particular types of bacteria in mice that were strongly linked to metabolic syndrome," says David Hackam, M.D., Ph.D., surgeon-in-chief and co-director of Johns Hopkins Children's Center and the study's senior author. "With this new knowledge we can look for ways to control the responsible bacteria or related genes and hopefully prevent obesity in children and adults."
https://www.sciencedaily.com/releases/2018/02/180212100618.htm
Read 'Gut' by Giulia Enders! 🙂