Northerner
Admin (Retired)
- Relationship to Diabetes
- Type 1
Epigenetics -- the science of how gene activity can be altered without changes in the genetic code -- plays a critical role in every aspect of life, from the differentiation of stem cells to the regulation of metabolism and growth of cancer cells.
Epigenetic factors act by reworking the structure in which genes reside, called chromatin. Inside chromatin, DNA is wound around proteins called histones. Several new cancer treatments interfere with the function of enzymes that chemically mark the histones to alter the readout of the DNA code and ramp the expression of genes up or down, as if with a dimmer switch. Enzymes called histone deacetylases (HDACs) erase the mark and shut off gene expression.
http://www.sciencedaily.com/releases/2013/01/130109151118.htm
Epigenetic factors act by reworking the structure in which genes reside, called chromatin. Inside chromatin, DNA is wound around proteins called histones. Several new cancer treatments interfere with the function of enzymes that chemically mark the histones to alter the readout of the DNA code and ramp the expression of genes up or down, as if with a dimmer switch. Enzymes called histone deacetylases (HDACs) erase the mark and shut off gene expression.
http://www.sciencedaily.com/releases/2013/01/130109151118.htm